Photocatalytic photosystem I/PEDOT composite films prepared by vapor-phase polymerization.

نویسندگان

  • M T Robinson
  • C E Simons
  • D E Cliffel
  • G K Jennings
چکیده

Photosystem I (PSI) achieves photo-induced charge separation with outstanding internal quantum efficiency and has been used to improve the performance of various photoelectrochemical systems. Herein, we describe a fast and versatile technique to assemble composite films containing PSI and a chosen intrinsically conductive polymer (ICP). A mixture of PSI and a Friedel-Crafts catalyst (FeCl3) is drop cast atop a substrate of choice. Contact with ICP monomer vapor at low temperature stimulates polymer growth throughout PSI films in minutes. We assess the effects of PSI loading on the rapid vapor-phase growth of poly(3,4-ethylenedioxythiophene) (PEDOT) within and above PSI multilayer films, and characterize the resulting film's thickness, electrochemical capacitance, and photocatalytic response. Composite films generate cathodic photocurrent when in contact with an aqueous redox electrolyte, confirming retention of the photocatalytic activity of the polymer-entrapped PSI multilayer assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical preparation of Photosystem I-polyaniline composite films for biohybrid solar energy conversion.

In this work, we report for the first time the entrapment of the biomolecular supercomplex Photosystem I (PSI) within a conductive polymer network of polyaniline via electrochemical copolymerization. Composite polymer-protein films were prepared on gold electrodes through potentiostatic electropolymerization from a single aqueous solution containing both aniline and PSI. This study demonstrates...

متن کامل

A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production.

A new type of graphitic C3N4-based composite photocatalysts was designed and prepared by co-loading PEDOT as a hole transport pathway and Pt as an electron trap on C3N4. The as-prepared C3N4-PEDOT-Pt composites showed drastically enhanced activity for visible light-driven photocatalytic H2 production compared to those of C3N4-PEDOT and C3N4-Pt, possibly due to the spatial separation of the redu...

متن کامل

Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM.

[Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)] (PEDOT:PSS, Baytron P) composite films were prepared under various conditions and their conductivities were studied by the current-sensing atomic force microscopy (CS-AFM) technique. Topographic and current images of pristine and additive-treated PEDOT:PSS as well as electrochemically synthesized PEDOT films were obtained in nanoscale us...

متن کامل

Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables

Conductive core-sheath TiO(2)-PEDOT nanocables were prepared using electrospun TiO(2) nanofibers as template, followed by vapor phase polymerization of EDOT. Various techniques were employed to characterize the sample. The results reveal that the TiO(2) core has an average diameter of ∼78 nm while the PEDOT sheath has a uniform thickness of ∼6 nm. The as-prepared TiO(2)-PEDOT nanocables display...

متن کامل

Vapor phase polymerization of EDOT from submicrometer scale oxidant patterned by dip-pen nanolithography.

Some of the most exciting recent advances in conducting polymer synthesis have centered around the method of vapor phase polymerization (VPP) of thin films. However, it is not known whether the VPP process can proceed using significantly reduced volumes of oxidant and therefore be implemented as part of nanolithography approach. Here, we present a strategy for submicrometer scale patterning of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 9 18  شماره 

صفحات  -

تاریخ انتشار 2017